Impact of Climate Change on Runoff in the Gilgel Abbay Watershed, the Upper Blue Nile Basin, Ethiopia

نویسندگان

  • Hailu Sheferaw Ayele
  • Ming-Hsu Li
  • Ching-Pin Tung
  • Tzu-Ming Liu
  • Arjen Y. Hoekstra
چکیده

Hydrological assessment is critical to the successful implementation of adaption measures. In this study, projections of seven global circulation models (GCMs) associated with high and medium–low Representative Concentration Pathways (RCP 8.5 and RCP 4.5) for the period 2021–2040 and 2081–2100 were adopted to assess changes on runoffs in the Gilgel Abbay watershed, the upper Blue Nile basin. A weather generator was employed to generate daily temperature and precipitation to drive a hydrological model for impact assessment. Despite the projected magnitude of changes varied among different GCMs and RCPs, increasing runoffs in wet-season and decreasing in dry-season are observed in both periods, mainly attributed to the change in projected precipitation. Such changes are profound in cases of RCP 8.5 with respect to those of RCP 4.5 and in cases of 2081–2100 with respect to those of 2021–2040. Although the increasing runoffs would provide greater inflow to Lake Tana, the increase of precipitation in wet-season would imply a higher possibility of flash floods. On the other hand, decrease runoffs in dry-season further intensify existing shortage of irrigation water demand. These changes will have deleterious consequences on the economic wellbeing of the country and require successful implementation of adaption measures to reduce vulnerability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin – Ethiopia

In this study we evaluated changes in land cover and rainfall in the Upper Gilgel Abbay catchment in the Upper Blue Nile basin and how changes affected stream flow in terms of annual flow, high flows and low flows. Land cover change assessment was through classification analysis of remote sensing based land cover data while assessments on rainfall and stream flow data are by statistical analysi...

متن کامل

Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin - Upper Blue Nile Basin of Ethiopia

Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and W...

متن کامل

Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile

Results of numerous evaluation studies indicated that satellite-rainfall products are contaminated with significant systematic and random errors. Therefore, such products may require refinement and correction before being used for hydrologic applications. In the present study, we explore a rainfall-runoff modeling application using the Climate Prediction Center-MORPHing (CMORPH) satellite rainf...

متن کامل

Simulation of the climate change impact on monthly runoff of Dez watershed using IHACRES model

Identification and analysis of flow fluctuations in consequences of climate change is one of the most important factors in water resources management planning and this is vital especially in areas where large crowds are engaged in agriculture. Dez watershed, as an agricultural hub in the country, is one of areas that river flow fluctuations caused by climate change can affect a large population...

متن کامل

Blue Nile Runoff Sensitivity to Climate Change

This study describes implementation of hydrological climate change impact assessment tool utilising a combination of statistical spatiotemporal downscaling and an operational hydrological model known as the Nile Forecasting System. A spatial rainfall generator was used to produce high-resolution (daily, 20km) gridded rainfall data required by the distributed hydrological model from monthly GCM ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016